Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under long-term N fertilization.

Identifieur interne : 000108 ( Main/Exploration ); précédent : 000107; suivant : 000109

Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under long-term N fertilization.

Auteurs : Joseph E. Carrara [États-Unis] ; Christopher A. Walter [États-Unis] ; Jennifer S. Hawkins [États-Unis] ; William T. Peterjohn [États-Unis] ; Colin Averill [États-Unis] ; Edward R. Brzostek [États-Unis]

Source :

RBID : pubmed:29488286

Descripteurs français

English descriptors

Abstract

Atmospheric nitrogen (N) deposition has enhanced soil carbon (C) stocks in temperate forests. Most research has posited that these soil C gains are driven primarily by shifts in fungal community composition with elevated N leading to declines in lignin degrading Basidiomycetes. Recent research, however, suggests that plants and soil microbes are dynamically intertwined, whereby plants send C subsidies to rhizosphere microbes to enhance enzyme production and the mobilization of N. Thus, under elevated N, trees may reduce belowground C allocation leading to cascading impacts on the ability of microbes to degrade soil organic matter through a shift in microbial species and/or a change in plant-microbe interactions. The objective of this study was to determine the extent to which couplings among plant, fungal, and bacterial responses to N fertilization alter the activity of enzymes that are the primary agents of soil decomposition. We measured fungal and bacterial community composition, root-microbial interactions, and extracellular enzyme activity in the rhizosphere, bulk, and organic horizon of soils sampled from a long-term (>25 years), whole-watershed, N fertilization experiment at the Fernow Experimental Forest in West Virginia, USA. We observed significant declines in plant C investment to fine root biomass (24.7%), root morphology, and arbuscular mycorrhizal (AM) colonization (55.9%). Moreover, we found that declines in extracellular enzyme activity were significantly correlated with a shift in bacterial community composition, but not fungal community composition. This bacterial community shift was also correlated with reduced AM fungal colonization indicating that declines in plant investment belowground drive the response of bacterial community structure and function to N fertilization. Collectively, we find that enzyme activity responses to N fertilization are not solely driven by fungi, but instead reflect a whole ecosystem response, whereby declines in the strength of belowground C investment to gain N cascade through the soil environment.

DOI: 10.1111/gcb.14081
PubMed: 29488286
PubMed Central: PMC5980773


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under long-term N fertilization.</title>
<author>
<name sortKey="Carrara, Joseph E" sort="Carrara, Joseph E" uniqKey="Carrara J" first="Joseph E" last="Carrara">Joseph E. Carrara</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, West Virginia University, Morgantown, WV, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, West Virginia University, Morgantown, WV</wicri:regionArea>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Walter, Christopher A" sort="Walter, Christopher A" uniqKey="Walter C" first="Christopher A" last="Walter">Christopher A. Walter</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, West Virginia University, Morgantown, WV, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, West Virginia University, Morgantown, WV</wicri:regionArea>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hawkins, Jennifer S" sort="Hawkins, Jennifer S" uniqKey="Hawkins J" first="Jennifer S" last="Hawkins">Jennifer S. Hawkins</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, West Virginia University, Morgantown, WV, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, West Virginia University, Morgantown, WV</wicri:regionArea>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Peterjohn, William T" sort="Peterjohn, William T" uniqKey="Peterjohn W" first="William T" last="Peterjohn">William T. Peterjohn</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, West Virginia University, Morgantown, WV, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, West Virginia University, Morgantown, WV</wicri:regionArea>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Averill, Colin" sort="Averill, Colin" uniqKey="Averill C" first="Colin" last="Averill">Colin Averill</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Boston University, Boston, MA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Boston University, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brzostek, Edward R" sort="Brzostek, Edward R" uniqKey="Brzostek E" first="Edward R" last="Brzostek">Edward R. Brzostek</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, West Virginia University, Morgantown, WV, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, West Virginia University, Morgantown, WV</wicri:regionArea>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29488286</idno>
<idno type="pmid">29488286</idno>
<idno type="doi">10.1111/gcb.14081</idno>
<idno type="pmc">PMC5980773</idno>
<idno type="wicri:Area/Main/Corpus">000116</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000116</idno>
<idno type="wicri:Area/Main/Curation">000116</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000116</idno>
<idno type="wicri:Area/Main/Exploration">000116</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under long-term N fertilization.</title>
<author>
<name sortKey="Carrara, Joseph E" sort="Carrara, Joseph E" uniqKey="Carrara J" first="Joseph E" last="Carrara">Joseph E. Carrara</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, West Virginia University, Morgantown, WV, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, West Virginia University, Morgantown, WV</wicri:regionArea>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Walter, Christopher A" sort="Walter, Christopher A" uniqKey="Walter C" first="Christopher A" last="Walter">Christopher A. Walter</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, West Virginia University, Morgantown, WV, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, West Virginia University, Morgantown, WV</wicri:regionArea>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hawkins, Jennifer S" sort="Hawkins, Jennifer S" uniqKey="Hawkins J" first="Jennifer S" last="Hawkins">Jennifer S. Hawkins</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, West Virginia University, Morgantown, WV, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, West Virginia University, Morgantown, WV</wicri:regionArea>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Peterjohn, William T" sort="Peterjohn, William T" uniqKey="Peterjohn W" first="William T" last="Peterjohn">William T. Peterjohn</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, West Virginia University, Morgantown, WV, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, West Virginia University, Morgantown, WV</wicri:regionArea>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Averill, Colin" sort="Averill, Colin" uniqKey="Averill C" first="Colin" last="Averill">Colin Averill</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Boston University, Boston, MA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Boston University, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brzostek, Edward R" sort="Brzostek, Edward R" uniqKey="Brzostek E" first="Edward R" last="Brzostek">Edward R. Brzostek</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, West Virginia University, Morgantown, WV, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, West Virginia University, Morgantown, WV</wicri:regionArea>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Global change biology</title>
<idno type="eISSN">1365-2486</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacteria (growth & development)</term>
<term>Bacterial Physiological Phenomena (MeSH)</term>
<term>Carbon (metabolism)</term>
<term>Fungi (growth & development)</term>
<term>Fungi (physiology)</term>
<term>Nitrogen (metabolism)</term>
<term>Soil (chemistry)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Trees (growth & development)</term>
<term>Trees (physiology)</term>
<term>West Virginia (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (croissance et développement)</term>
<term>Arbres (physiologie)</term>
<term>Azote (métabolisme)</term>
<term>Bactéries (croissance et développement)</term>
<term>Carbone (métabolisme)</term>
<term>Champignons (croissance et développement)</term>
<term>Champignons (physiologie)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Phénomènes physiologiques bactériens (MeSH)</term>
<term>Sol (composition chimique)</term>
<term>Virginie occidentale (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>West Virginia</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Arbres</term>
<term>Bactéries</term>
<term>Champignons</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Bacteria</term>
<term>Fungi</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arbres</term>
<term>Champignons</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fungi</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Bacterial Physiological Phenomena</term>
<term>Soil Microbiology</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Microbiologie du sol</term>
<term>Phénomènes physiologiques bactériens</term>
<term>Virginie occidentale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Atmospheric nitrogen (N) deposition has enhanced soil carbon (C) stocks in temperate forests. Most research has posited that these soil C gains are driven primarily by shifts in fungal community composition with elevated N leading to declines in lignin degrading Basidiomycetes. Recent research, however, suggests that plants and soil microbes are dynamically intertwined, whereby plants send C subsidies to rhizosphere microbes to enhance enzyme production and the mobilization of N. Thus, under elevated N, trees may reduce belowground C allocation leading to cascading impacts on the ability of microbes to degrade soil organic matter through a shift in microbial species and/or a change in plant-microbe interactions. The objective of this study was to determine the extent to which couplings among plant, fungal, and bacterial responses to N fertilization alter the activity of enzymes that are the primary agents of soil decomposition. We measured fungal and bacterial community composition, root-microbial interactions, and extracellular enzyme activity in the rhizosphere, bulk, and organic horizon of soils sampled from a long-term (>25 years), whole-watershed, N fertilization experiment at the Fernow Experimental Forest in West Virginia, USA. We observed significant declines in plant C investment to fine root biomass (24.7%), root morphology, and arbuscular mycorrhizal (AM) colonization (55.9%). Moreover, we found that declines in extracellular enzyme activity were significantly correlated with a shift in bacterial community composition, but not fungal community composition. This bacterial community shift was also correlated with reduced AM fungal colonization indicating that declines in plant investment belowground drive the response of bacterial community structure and function to N fertilization. Collectively, we find that enzyme activity responses to N fertilization are not solely driven by fungi, but instead reflect a whole ecosystem response, whereby declines in the strength of belowground C investment to gain N cascade through the soil environment.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">29488286</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>12</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-2486</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>24</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2018</Year>
<Month>06</Month>
</PubDate>
</JournalIssue>
<Title>Global change biology</Title>
<ISOAbbreviation>Glob Chang Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under long-term N fertilization.</ArticleTitle>
<Pagination>
<MedlinePgn>2721-2734</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/gcb.14081</ELocationID>
<Abstract>
<AbstractText>Atmospheric nitrogen (N) deposition has enhanced soil carbon (C) stocks in temperate forests. Most research has posited that these soil C gains are driven primarily by shifts in fungal community composition with elevated N leading to declines in lignin degrading Basidiomycetes. Recent research, however, suggests that plants and soil microbes are dynamically intertwined, whereby plants send C subsidies to rhizosphere microbes to enhance enzyme production and the mobilization of N. Thus, under elevated N, trees may reduce belowground C allocation leading to cascading impacts on the ability of microbes to degrade soil organic matter through a shift in microbial species and/or a change in plant-microbe interactions. The objective of this study was to determine the extent to which couplings among plant, fungal, and bacterial responses to N fertilization alter the activity of enzymes that are the primary agents of soil decomposition. We measured fungal and bacterial community composition, root-microbial interactions, and extracellular enzyme activity in the rhizosphere, bulk, and organic horizon of soils sampled from a long-term (>25 years), whole-watershed, N fertilization experiment at the Fernow Experimental Forest in West Virginia, USA. We observed significant declines in plant C investment to fine root biomass (24.7%), root morphology, and arbuscular mycorrhizal (AM) colonization (55.9%). Moreover, we found that declines in extracellular enzyme activity were significantly correlated with a shift in bacterial community composition, but not fungal community composition. This bacterial community shift was also correlated with reduced AM fungal colonization indicating that declines in plant investment belowground drive the response of bacterial community structure and function to N fertilization. Collectively, we find that enzyme activity responses to N fertilization are not solely driven by fungi, but instead reflect a whole ecosystem response, whereby declines in the strength of belowground C investment to gain N cascade through the soil environment.</AbstractText>
<CopyrightInformation>© 2018 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Carrara</LastName>
<ForeName>Joseph E</ForeName>
<Initials>JE</Initials>
<Identifier Source="ORCID">0000-0003-0597-1175</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, West Virginia University, Morgantown, WV, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Walter</LastName>
<ForeName>Christopher A</ForeName>
<Initials>CA</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, West Virginia University, Morgantown, WV, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hawkins</LastName>
<ForeName>Jennifer S</ForeName>
<Initials>JS</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, West Virginia University, Morgantown, WV, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Peterjohn</LastName>
<ForeName>William T</ForeName>
<Initials>WT</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, West Virginia University, Morgantown, WV, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Averill</LastName>
<ForeName>Colin</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0003-4035-7760</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, Boston University, Boston, MA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brzostek</LastName>
<ForeName>Edward R</ForeName>
<Initials>ER</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, West Virginia University, Morgantown, WV, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>U54 GM104942</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>02</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Glob Chang Biol</MedlineTA>
<NlmUniqueID>9888746</NlmUniqueID>
<ISSNLinking>1354-1013</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018407" MajorTopicYN="Y">Bacterial Physiological Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014903" MajorTopicYN="N" Type="Geographic">West Virginia</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">arbuscular mycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="Y">belowground carbon allocation</Keyword>
<Keyword MajorTopicYN="Y">extracellular enzymes</Keyword>
<Keyword MajorTopicYN="Y">microbial community</Keyword>
<Keyword MajorTopicYN="Y">nitrogen fertilization</Keyword>
<Keyword MajorTopicYN="Y">plant-microbial interactions</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>06</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>11</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>01</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29488286</ArticleId>
<ArticleId IdType="doi">10.1111/gcb.14081</ArticleId>
<ArticleId IdType="pmc">PMC5980773</ArticleId>
<ArticleId IdType="mid">NIHMS961906</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2011;6(6):e20421</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21701691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(3):600-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17244055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Mar;87(3):563-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16602286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2011 Apr;92(4):892-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21661552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jul;72(7):5069-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16820507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2017 Sep;98 (9):2322-2332</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28609549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2017 Nov;185(3):327-337</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28913653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1995 May;15(5):317-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14965955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2015 May;21(5):2082-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25421798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan 7;41(1):e1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22933715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jul;199(1):41-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23713553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Jul 1;353(6294):72-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27365447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21390-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23236140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1537-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25382456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2016 Oct 20;236:110-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27544286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e40863</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22808280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2009 May;57(4):728-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18791762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Aug;73(16):5261-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Aug;75(15):5111-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19502440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 May;7(5):335-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Jun;206(4):1274-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25627914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2014 Aug;95(8):2224-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25230473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2017 Mar 3;5(1):27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28253908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2008 Nov;11(11):1252-1264</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18823393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jan;201(1):269-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24010995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Apr;214(1):432-442</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27918073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 1;26(19):2460-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jan;201(1):31-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23952258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2011 Oct;78(1):17-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21470255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Nov;22(21):5271-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24112409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2014 Aug;4(15):2979-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25247056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 1993 Apr;2(2):113-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8180733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Mar 02;7:259</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26973633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2008 Oct;11(10):1111-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18673384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2017 Apr;122(4):940-952</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28092137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Sep 21;6:33696</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27650273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 May;6(5):1007-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22134642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Appl. 2008 Dec;18(8):2016-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19263894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2013 Jul;19(7):2158-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23504744</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
<li>Minnesota</li>
<li>Virginie-Occidentale</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Virginie-Occidentale">
<name sortKey="Carrara, Joseph E" sort="Carrara, Joseph E" uniqKey="Carrara J" first="Joseph E" last="Carrara">Joseph E. Carrara</name>
</region>
<name sortKey="Averill, Colin" sort="Averill, Colin" uniqKey="Averill C" first="Colin" last="Averill">Colin Averill</name>
<name sortKey="Brzostek, Edward R" sort="Brzostek, Edward R" uniqKey="Brzostek E" first="Edward R" last="Brzostek">Edward R. Brzostek</name>
<name sortKey="Hawkins, Jennifer S" sort="Hawkins, Jennifer S" uniqKey="Hawkins J" first="Jennifer S" last="Hawkins">Jennifer S. Hawkins</name>
<name sortKey="Peterjohn, William T" sort="Peterjohn, William T" uniqKey="Peterjohn W" first="William T" last="Peterjohn">William T. Peterjohn</name>
<name sortKey="Walter, Christopher A" sort="Walter, Christopher A" uniqKey="Walter C" first="Christopher A" last="Walter">Christopher A. Walter</name>
<name sortKey="Walter, Christopher A" sort="Walter, Christopher A" uniqKey="Walter C" first="Christopher A" last="Walter">Christopher A. Walter</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000108 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000108 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29488286
   |texte=   Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under long-term N fertilization.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29488286" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020